Project Title	Funding	Institution	
Molecular pathways involved in oxidative stress and leaky gut impairment in autism spectrum disorders	\$20,000	University of Naples	
Study of anti-neuronal autoantibodies in behavioral and movement disorders	\$48,000	University of Oklahoma Health Sciences Center	
Influence of the maternal immune response on the development of autism	\$127,499	University of Medicine & Dentistry of New Jersey	
A mitochondrial etiology of autism	\$657,793	Children's Hospital of Philadelphia	
Gene-environment interactions in the pathogenesis of autism-like neurodevelopmental damage: A mouse model	\$60,000	Johns Hopkins University School of Medicine	
How does IL-6 mediate the development of autism-related behaviors?	\$28,000	California Institute of Technology	
Mechanisms of mitochondrial dysfunction in autism	\$0	Georgia State University	
Redox abnormalities as a vulnerability phenotype for autism and related alterations in CNS development	\$0	State University of New York at Potsdam	
Redox abnormalities as a vulnerability phenotype for autism and related alterations in CNS development	\$0	Arkansas Children's Hospital Research Institute	
Redox abnormalities as a vulnerability phenotype for autism and related alterations in CNS development	\$0	University of Rochester	
Maternal infection and autism: Impact of placental sufficiency and maternal inflammatory responses on fetal brain development	\$127,500	Stanford University	
Influence of maternal cytokines during pregnancy on effector and regulatory T helper cells as etiological factors in autism	\$93,500	University of Medicine & Dentistry of New Jersey	
Systematic characterization of the immune response to gluten and casein in autism spectrum disorders	\$0	Weill Cornell Medical College	
The pathogenesis of autism: Maternal antibody exposure in the fetal brain	\$90,173	The Feinstein Institute for Medical Research	
Influence of maternal cytokines on activation of the innate immune system as a factor in the development of autism	\$24,000	University of Medicine & Dentistry of New Jersey	
Immune molecules and cortical synaptogenesis: Possible implications for the pathogenesis of autism	\$0	University of California, Davis	
Influence of oxidative stress on transcription and alternative splicing of methionine synthase in autism	\$28,000	Northeastern University	
A non-human primate autism model based on maternal infection	\$335,155	California Institute of Technology	
Regulation of inflammatory Th17 cells in autism spectrum disorder	\$112,500	New York University School of Medicine	
Maternal immune activation, cytokines, and the pathogenesis of autism	\$382,588	University of California, Davis	
Primate models of autism	\$114,105	University of California, Davis	
Primate models of autism	\$734,756	University of California, Davis	
Does mercury and neurotension induce mitochondrial DNA release from human mast cells and contribute to auto-immunity in ASD?	\$40,000	Tufts University	
Environmentally induced oxidative stress and altered local brain thyroid horomone metabolism: relevance to autism?	\$25,000	Harvard Medical School; Brigham and Women's Hospital	
The effect of mercury and neuropeptide triggers on human mast cell release of neurotoxic molecules	\$5,000	Tufts University	
Consequences of maternal antigen exposure on offspring immunity: An animal model of vertical tolerance	\$0	The Fox Chase Cancer Center	
Project 2: Immunological susceptibility of autism	\$173,585	University of California, Davis	

Project Title	Funding	Institution	
An ex-vivo placental perfusion system to study materno-fetal biology	\$243,000	University of Southern California	
CNS toxicity of ambient air pollution: Postnatal exposure to ultrafine particles	\$191,406	University of Rochester	
Is autism a mitochondrial disease?	\$60,000	University of California, Davis	
Early biologic markers for autism	\$43,308	Kaiser Permanente Division of Research	
A role for immune molecules in cortical connectivity: Potential implications for autism	\$28,000	University of California, Davis	
Prostaglandins and cerebellum development	\$375,000	University of Maryland, Baltimore	
EFRI- BSBA: Novel microsystems for manipulation and analysis of immune cells	\$524,890	University of California, Davis	
A non-human primate autism model based on maternal immune activation	\$114,105	University of California, Davis	
A primate model of gut, immune, and CNS response to childhood vaccines	\$155,086	University of Washington	
Neurological diseases due to inborn errors of metabolism	\$10,458	University of Texas Southwestern Medical Center	